Direct search for a ferromagnetic phase in a heavily overdoped nonsuperconducting copper oxide.

نویسندگان

  • J E Sonier
  • C V Kaiser
  • V Pacradouni
  • S A Sabok-Sayr
  • C Cochrane
  • D E MacLaughlin
  • S Komiya
  • N E Hussey
چکیده

The doping of charge carriers into the CuO(2) planes of copper oxide Mott insulators causes a gradual destruction of antiferromagnetism and the emergence of high-temperature superconductivity. Optimal superconductivity is achieved at a doping concentration p beyond which further increases in doping cause a weakening and eventual disappearance of superconductivity. A potential explanation for this demise is that ferromagnetic fluctuations compete with superconductivity in the overdoped regime. In this case, a ferromagnetic phase at very low temperatures is predicted to exist beyond the doping concentration at which superconductivity disappears. Here we report on a direct examination of this scenario in overdoped La(2-x)Sr(x)CuO(4) using the technique of muon spin relaxation. We detect the onset of static magnetic moments of electronic origin at low temperature in the heavily overdoped nonsuperconducting region. However, the magnetism does not exist in a commensurate long-range ordered state. Instead it appears as a dilute concentration of static magnetic moments. This finding places severe restrictions on the form of ferromagnetism that may exist in the overdoped regime. Although an extrinsic impurity cannot be absolutely ruled out as the source of the magnetism that does occur, the results presented here lend support to electronic band calculations that predict the occurrence of weak localized ferromagnetism at high doping.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Search for ferromagnetic order in overdoped copper-oxide superconductors

In copper-oxides that show high-temperature superconductivity (HTS), the critical temperature (Tc) has a dome-shaped doping dependence. The cause of demise of both Tc and superfluid density ns on the overdoped side is a major puzzle. A recent study of transport and diamagnetism in a large number of overdoped La2-xSrxCuO4 (LSCO) films shows that this cannot be accounted for by disorder within th...

متن کامل

Microstructures of Tl 2 Ba 2 Cuo 6 Thin ®lms with Di€erent Doping Levels

Microstructures of Tl 2 Ba 2 CuO 6 (Tl-2201) thin ®lms with di€erent doping levels grown on SrTiO 3 substrates were studied by transmission electron microscopy. It is found that Tl-2201 ®lms are epitaxial single phase over large area. A new three-dimensional modulation structure was observed for the heavily overdoped ®lms. With decrease of doping level from heavily overdoped to optimally doped,...

متن کامل

Contrasting spin dynamics between underdoped and overdoped Ba(Fe1-xCox)2As2.

We report the first NMR investigation of spin dynamics in the overdoped nonsuperconducting regime of Ba(Fe1-xCox)2As2 up to x=0.26. We demonstrate that the absence of interband transitions with large momentum transfer Q{AF} approximately (pi/a,0) between the hole and electron Fermi surfaces results in complete suppression of antiferromagnetic spin fluctuations for x greater than or approximatel...

متن کامل

Synthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors

Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400,  500, and 600°C. It has also been found that the reaction temperature pla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 40  شماره 

صفحات  -

تاریخ انتشار 2010